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ABSTRACT

The paper introduces a new approach to harmonic-~balance
simulation, based on inexact Newton methods and iterative
system-solving techniques. Storage and factorization of the
Jacobian matrix are avoided, resulting in a dramatic drop of
execution time and memory occupation. HB analyses with
several tens of thousands unknowns become possible on
ordinary workstations.

INTRODUCTION

State-of-the-art harmonic-balance (HB) simulators for the
steady-state analysis of nonlinear microwave circuits usually
rely upon the Newton method coupled with some sort of
globalizing mechanism such as norm reduction [1]. Indeed, it
has been found that norm-reducing Newton methods based on
the exact computation of the Jacobian matrix and on a suitable
parametric formulation of the strongest device nonlinearities,
may provide very robust solution algorithms that can efficiently
handle forcing amplitudes of hundreds of kilovolts [2]. This is
not only true for the usual devices normally encountered in
microwave circuits, but also for some kinds of very ill-
conditioned nonlinearities that may occur in power circuits,
such as ferromagnetic hysteresis [3]. Thus the only outstanding
drawback of this simulation technique is the rapidly increasing
size of the numerical problem as the number of active devices
and/or of spectral lines becomes large. This issue is increas-
ingly important for modern microwave applications, since
integrated circuit topologies and signal spectra tend to become
more and more complex (e.g., in cellular systems applications).
For this reason, the problem of large-size HB simulations has
been tackled by several authors in the recent technical literature.
The proposed approaches are usually aimed at avoiding the
storage and factorization of the full Jacobian matrix. In [4], [5]
this is obtained by solving the linear system at each step of the
Newton algorithm by an iterative technique with suitable
preconditioning. In [2], [6] a large percentage of the entries of
the Jacobian matrix is artificially set to O according to a suitable
numerical or physical criterion, and a sparse-matrix solver is
used for the linear system. Generally speaking, the penalty for
the use of such techniques is a considerable limitation of the
power-handling capabilities of the HB simulator. As an
example, ref. [2] reports the intermodulation (IM) analysis of a
distributed DGFET mixer requiring 3600 unknowns. Conver-
gence is achieved by the sparse-matrix technique up to an LO
drive of about 3 V. As a further example, ref. [5] reports the
harmonic distortion analysis of an MOS amplifier requiring
5832 unknowns. Convergence is achieved by the iterative
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technique up to a drive level of about 0.4 V.

The paper discusses a novel approach to the solution of
large-size HB simulation problems, which is very well suited
for strongly nonlinear applications. The analysis relies on an
inexact Newton method, and uses an iterative technique to
approximately solve the Newton equation, thus avoiding the
storage and factorization of the Jacobian matrix. High numerical
efficiency is obtained by suitably choosing the accuracy
requirements for the approximate solution at each step. Excel-
lent robustness is provided by a norm-reduction scheme. The
capabilities of the new technique are demonstrated by the gain
compression and intermodulation analysis of a strongly
nonlinear circuit, consisting of a double-ring diode mixer with
active baluns. In particular, a large-signal 5-th order IM
analysis requiring 33184 unknowns - probably the largest HB
simulation ever reported - is demonstrated on an ordinary
workstation.

The new approach retains all the capabilities and the
advantages of multiple FFT-based HB techniques [2], is faster
than traditional HB algorithms, and effectively overcomes the
size problem for large circuits. Its results are numerically exact,
which is of primary importance in the evaluation of critical
performance aspects such as high-order IM products. This
method is thus believed to represent a real breakthrough in
numerical simulation techniques for analog nonlinear circuits.

INEXACT NEWTON METHODS

Let us consider the nonlinear system of N equations in N
unknowns

EX)=0 (D

where E : RN — RN is continuously differentiable. The exact
Newton method for the solution of (1) is the computation of a
sequence of iterates X, by means of the recursive relation

J(Xl) lll =- E(Xl)
@

X=X, +n,

where n; represents the exact Newton update and J(X) is the
N x N Jacobian matrix of the system (1) (J(X) = dE/dX). The
exact solution of the Newton equation (i.e., the first of (2)) is
expensive when N is large, and may not be worthwhile in
general especially at the first steps. A more efficient solution
approach may be developed by resorting to an inexact Newton
method [7]. In this case a sequence of iterates is generated by
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finding at each step some update s; and some forcing term
f; (0 <f; < 1) such that

I E(X,) + JCX) s, I < £, Il ECX) I
3
Xy =Xj+s;

according to a suitable definition of the norm i » Il. For f; =0 (3)
reduces to (2); otherwise, the forcing term is in some way a
measure of the allowed deviation of the current update from the
Newton update defined by (2).

In the practical use of (3), the forcing term is first chosen at
each step making use of a suitable algorithm. For HB analysis
applications, excellent results have been obtained by means of
the update formula [8]

NEX)-EX,. ) -JXiDs.
fi= HE()l(i_l)lI e 4

with fy = 0.3. Note that (4) is a normalized measure of the
deviation between the nonlinear map E(X) and its local linear
model at the (i - 1)-th step. After choosing the forcing term, the
Newton equation is approximately solved in such a way that the
approximate solution s; satisfies the first of (3) for the given f;.

One effective way of doing so is to make use of an iterative
method, whereby the accuracy of the solution is refined step by
step until the first of (3) is met. This usually provides an
excellent tradeoff between accuracy and CPU time consump-
tion. In addition, iterative methods do not require the storage
and factorization of the Jacobian matrix, but only the repeated
computation of matrix-vector products of the form J(X)z,
where z generically denotes a vector of size N. This is
obviously a key advantage if N is very large. On the other
hand, if N is so large that the Jacobian matrix cannot be stored,
the entries of J(X) must be cyclically re-computed as needed in
order to generate the products J(X)z. As we shall see in the
next section, this potential drawback can be nicely overcome
when (1) is the nonlinear solving system for a harmonic-
balance analysis, thanks to the peculiar structure of the Jacobian
matrix. Finally, it is worth noting that the approximation of the
Jacobian matrix does not affect the accuracy of the results:
whenever convergence is achieved, the solution of (1) is exact
[7]. The convergence properties of an iterative solver can be
considerably improved by suitably preconditioning the Newton
equation, i.e., replacing the first of (2) by

JX) P Pon; = - E(X) (5)

where P, is a nonsingular N x N matrix [9]. Intuitively, P,
should be chosen is such a way that the preconditioned system

matrix J(X,) Pl'1 be as close as possible to an identity matrix,
compatibly with the constraint that the computation of the

product Pi'l z should have negligible cost in comparison with
the computation of J(X)) z.

APPLICATION TO HARMONIC-BALANCE ANALYSIS

Following [2], we describe the nonlinear subnetwork by a
set of generalized parametric equations of the form

v(t) = u[x(t) R xd(t)}

(6)
. dx d"x
L[] =W[X(t) s dqt o e d—tn , Xd(t):]
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In (6) x(t) is a vector of state variables (SV), v(t), i(t) are
vectors of voltages and currents at the device ports, and x4(t) is

a vector of time-delayed state variables, i.e., Xg(t) = x(t - 1)

where the 1,'s are constant delays. The vector-valued functions
u, w are assumed to be nonlinear and memoryless. All vectors
have the same size np, equal to the number of device ports.
In the general case of multitone excitation, a generic IM product
of the exciting tones is identified by a vector k = [k;, k2,.‘.]T

of harmonic numbers, and is denoted by Q,. Let U, Wy be
the vectors containing the K-th harmonics of the voltage and
current harmonics. The vector of (complex) harmonic-balance

errors at £ is then [2]
E, =Y(Q) Uy + Wy + Ny @)

where Y(®) = G(®) + jB(®) is the linear subnetwork
admittance matrix, and N is the vector of Norton equivalent

current sources of the free generators of frequency £2;,.

In practice, in order to avoid the use of negative
frequencies, the circuit equations are formulated in terms of real
and imaginary parts of both the HB errors and the SV
harmonics. Thus Re[E, ] and Im[Ey ] (for all k's) are stacked to

form a real error vector E, and so are Re[X ] and Im[X ] to
form a vector X of real unknowns. The nonlinear solving
system is then written in the form (1), and its size is
N = np(2ny + 1) where ny is the number of spectral lines (not
including d.c.). Accordingly, the Jacobian matrix J(X) is
partitioned frequency-wise into submatrices Jy ¢ of the form

BRe[Ek] dRe[Ey]

dRe[X ] JIm[X;]

Js = ®)
BIm[Ek] BIm[Ek]

oRe[X,] om[X,]

From (7) we obtain directly

dRe[Ey] dRe[ Uy ]
dRe[X,] ~ F Re[X,]
oIm[Uy]  OdRe[W,]

- Bl Re[X,] ©)

oRe[X ]
and the like. The derivatives of the voltage and currents
harmonics Uy, W) may be found in the following way.
We first introduce the Fourier expansions

Ju .
N = % C,.p exp(Q,0

0 .
5)%] = Z Cg exp(jL2,t)
P

(10)

d .
3-;1 = z Dup exp(]th)
moop



where y; =X, ¥, = d"x /dt™ (1 < m < n). The derivatives of
Uy, Wy with respect to the real and imaginary parts of the SV
harmonics are then linear combinations of the Fourier
coefficients Cp; ks Dy kg Cgis R Dgts, whose explicit ex-
pressions may be found in [2]. Note that the C, D coefficients
are formally complex matrices of size np, x np. However, the
nonlinear subnetwork is usually a set of uncoupled devices
(such as diodes or transistors), each having a small number of
ports (usually 1 or 2). Thus the C, D matrices are in reality
block diagonal, with very small diagonal blocks. Also, some of
the entries of the C, D matrices may be identically zero
depending on the device models. If we denote by M, the total
number of nonzero scalar Fourier coefficients appearing in the
expansions (10) associated with the i-th device, the memory
occupation of the C, D matrices expressed in memory words is

MCD=2nH2Tle an

where T is the number of intermodulating tones, and the
summation is extended over all nonlinear devices. This is
usually well within the reach of any ordinary workstation, as
shown by the examples reported in the following section.

The above-discussed structure of the Jacobian matrix lends
itself nicely to the use of an iterative method in the solution of
the Newton equation. The linear subnetwork admittance is
computed and stored once for all at the beginning of the
analysis. The Fourier expansions (10) are computed by the
multidimensional FFT and stored at the beginning of each
Newton step. Thus all the information needed in order to
multiply the Jacobian matrix by a vector is available in memory,
and need not be re-computed at each iteration, in spite of the
fact that the entire Jacobian matrix is not pre-computed and
stored. In this way the solution process becomes very efficient.
A further considerable advantage of this approach is that it
makes naturally available an effective way of preconditioning
the Newton equation. It turns out that the artificially sparse
Jacobian matrix discussed in [2] represents an excellent
preconditioner for broad classes of microwave circuits. Indeed,
it is easy to find an intuitive explanation of this result: the sparse
Jacobian matrix is inexpensive to factorize due to its block-
diagonal structure, and at the same time is accurate enough to
ensure convergence of the sequence of iterates (2) at low and
moderate drive levels [2].

In view of the application to the HB analysis of strongly
nonlinear microwave circuits, the GMRES method [10] has
been selected out of the many iterative techniques reported in
the literature, because of its robustness [9]. A norm-reduction
mechanism (backtracking) has also been implemented in order
to improve the global convergence properties of the inexact
Newton method.

NUMERICAL RESULTS AND DISCUSSION

The harmonic-balance analysis technique discussed in the
previous sections has been successfully applied to a number of
large-size nonlinear simulation problems. As representative
examples, we report here on some results obtained for a
double-ring balanced mixer with the topology schematically
illustrated in fig. 1 [11]. In this circuit the two diode rings are
the mixing elements, and the distributed FET structures act as
broadband baluns at the RF, LO, and IF ports. The use of
active baluns makes the mixer suitable for monolithic
integration. The circuit contains 8 diodes and 12 FET's for a
total of ny, = 32 device ports. The diodes are driven into
forward conduction by the LO pump, and are thus strongly
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nonlinear due to the exponential behavior of the junction current
and of the diffusion capacitance. In all cases the HB analysis

was requested to achieve a relative error less than 107> on each
spectral component.

As a first simulation problem, we consider the gain
compression analysis of the mixer with 8 local-oscillator
harmonics, and 3 upper and 3 lower sidebands per LO
harmonic. This problem was already treated in [12] by a
hierarchical HB technique, and is thus useful for the sake of
comparison. In this case we have ny = 59, so that the analysis
requires N = 3808 scalar unknowns. The storage of the C, D
matrices requires Mcp = 77 kwords, corresponding to 0.62
MB. The analysis is carried out with LO drive of +13 dBm, and
RF power ranging from -10 dBm to +13 dBm. The results
shown in fig. 2 predict a 1-dB compression point of about +12
dBm, in very good agreement with experimental observations
[11]. On a SPARCstation 10 with 112 MB of central memory,
the average CPU time per point required by the HB analysis
based on the inexact Newton method is about 96 seconds. For
comparison, the same analysis takes about 230 seconds per
point by the hierarchical approach of [12], and as much as 4700
seconds per point by the conventional HB technique based on
the computation and storage of the full Jacobian matrix. The
results obtained by the three methods are identical. Note that the
power sweep is by no means indispensable to ensure
convergence of the algorithm: as an example, the analysis at the
1-dB compression point converges nicely starting from zero
harmonics in about 226 seconds. In order to verify the power-
handling capabilities of the algorithm, the analysis is repeated at
+12 dBm RF power and increasing LO drive. Convergence is
achieved by the inexact Newton method up to +30 dBm of LO
power, corresponding to an LO signal amplitude of 20 V.,

We next consider a large-signal two-tone intermodulation
analysis of the same mixer with 8 local-oscillator harmonics,
and IM products of the two RF carriers up to the 5th order.
In this case we have ny = 518, so that the analysis requires
N = 33184 scalar unknowns. With the conventional HB
approach the Jacobian matrix would take 8.8 GB of memory,
and with the hierarchical technique of [12] the storage of the
master Jabobian would require 0.55 GB. Thus neither approach
is practically usable (not even by resorting to virtual memory).
On the other hand, the storage of the C, D matrices requires
Mcp = 1.4 Mwords, corresponding to 11 MB. Thus the new
technique does not pose any significant storage problems.
The analysis is carried out with LO drive of +13 dBm, and RF
power (per tone) ranging from -10 dBm to +13 dBm (about
4-dB gain compression). The results shown in fig. 3 are very
well behaved throughout the power range of interest. On the
SPARCstation 10 with 112 MB of central memory, the average
CPU time per point required by the HB analysis based on the
inexact Newton method is about 2990 seconds.

The potential of the new technique can be appreciated by
considering that the same number of unknowns can accomodate
the analysis of a 600-transistor front-end with an ordinary
mixer spectrum of 13 lines plus dc.
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Fig. 1 - Schematic topology of a monolithic double-ring mixer (after [11]).
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